Volatility forecasting with smooth transition exponential smoothing
نویسندگان
چکیده
منابع مشابه
Volatility Forecasting with Smooth Transition Exponential Smoothing
Adaptive exponential smoothing methods allow smoothing parameters to change over time, in order to adapt to changes in the characteristics of the time series. This paper presents a new adaptive method for predicting the volatility in financial returns. It enables the smoothing parameter to vary as a logistic function of user-specified variables. The approach is analogous to that used to model t...
متن کاملSmooth Transition Exponential Smoothing
Adaptive exponential smoothing methods allow a smoothing parameter to change over time, in order to adapt to changes in the characteristics of the time series. However, these methods have tended to produce unstable forecasts and have performed poorly in empirical studies. This paper presents a new adaptive method, which enables a smoothing parameter to be modelled as a logistic function of a us...
متن کاملForecasting with exponential smoothing methods and bootstrap
The Boot.EXPOS procedure is an algorithm that combines the use of exponential smoothing methods with the bootstrap methodology for obtaining forecasts. In previous works the authors have studied and analyzed the interaction between these two methodologies. The initial sketch of the procedure was developed, modified and evaluated until its final form designated as Boot.EXPOS.
متن کاملExponential Smoothing, Long Memory and Volatility Prediction
Extracting and forecasting the volatility of financial markets is an important empirical problem. Time series of realized volatility or other volatility proxies, such as squared returns, display long range dependence. Exponential smoothing (ES) is a very popular and successful forecasting and signal extraction scheme, but it can be suboptimal for long memory time series. This paper discusses po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Forecasting
سال: 2004
ISSN: 0169-2070
DOI: 10.1016/j.ijforecast.2003.09.010